3 research outputs found

    Compliance flow: an intelligent workflow management system to support engineering processes

    Get PDF
    This work is about extending the scope of current workflow management systems to support engineering processes. On the one hand engineering processes are relatively dynamic, and on the other their specification and performance are constrained by industry standards and guidelines for the sake of product acceptability, such as IEC 61508 for safety and ISO 9001 for quality. A number of technologies have been proposed to increase the adaptability of current workflow systems to deal with dynamic situations. A primary concern is how to support open-ended processes that cannot be completely specified in detail prior to their execution. A survey of adaptive workflow systems is given and the enabling technologies are discussed. Engineering processes are studied and their characteristics are identified and discussed. Current workflow systems have been successfully used in managing "administrative" processes for some time, but they lack the flexibility to support dynamic, unpredictable, collaborative, and highly interdependent engineering processes. [Continues.

    A set theoretic view of the ISA hierarchy

    Get PDF
    The ISA (is-a) hierarchies are widely used in the classification and the representation of related objects. In terms of assessing similarity between two nodes, current distance approaches suffer from its nature that only parent-child relationships among nodes are captured in the hierarchy. This paper presents an idea of treating a hierarchy as a set rather than as a tree in the traditional view. The established set theory is applied to provide the foundation where the relations between nodes can be mathematically specified and results in a more powerful and logical assessment of similarity between nodes

    A Set Theoretic View of the ISA Hierarchy

    No full text
    The ISA (is-a) hierarchies are widely used in the classification and the representation of related objects. In terms of assessing similarity between two nodes, current distance approaches suffer from its nature that only parent-child relationships among nodes are captured in the hierarchy. This paper presents an idea of treating a hierarchy as a set rather than as a tree in the traditional view. The established set theory is applied to provide the foundation where the relations between nodes can be mathematically specified and results in a more powerful and logical assessment of similarity between nodes
    corecore